Selective cyclooxygenase-2 inhibition does not alter keratinocyte wound responses in the mouse epidermis after abrasion.
نویسندگان
چکیده
The cyclooxygenase isoforms, COX-1 and COX-2, are the rate limiting enzymes in the biosynthesis of prostaglandin E(2), a major prostaglandin involved in epidermal homeostasis and repair. Epidermal injury results in transient hyperplasia and induction of COX-2 expression. The role of COX-2 in this hyperplasia is unknown, however. In this study, we characterized the epidermal expression of COX isozymes following wounding by abrasion in SKH-1 mice using immunohistochemistry, in situ hybridization, and Western analysis. In addition, we evaluated pivotal keratinocyte functions necessary for the reparative hyperplasia, including proliferation by 5-bromo-2'deoxy-uridine labeling and differentiation by the expression of involucrin, keratin 1, and keratin 6. Although COX-1 expression in keratinocytes remained unchanged during wound healing, COX-2 expression was induced coincidentally with keratinocyte proliferation and keratin 6 expression, suggesting a role for COX-2 in epidermal repair. The role of COX-2 was also evaluated using the selective COX-2 inhibitor SC-791 and the traditional COX inhibitors indomethacin and diclofenac. Neither inhibitor altered keratinocyte proliferation or differentiation following abrasion, in contrast to dexamethasone, which delayed these responses. Our results indicated that, although COX-2 expression was coincident with transient epidermal hyperplasia and keratinocyte proliferation/differentiation during the healing of epidermal injury, it does not play a pivotal role in this repair process.
منابع مشابه
Wound inflammation in diabetic ob/ob mice: functional coupling of prostaglandin biosynthesis to cyclooxygenase-1 activity in diabetes-impaired wound healing.
This study focused on the regulation of prostaglandin (PG) production in diabetes-impaired wound tissue. Cyclooxygenase (COX)-1 and -2 expression and activity were severely dysregulated in chronic wounds of diabetic ob/ob mice. Those wounds were characterized by a reduced expression of COX-1 and the presence of strongly elevated levels of COX-2 when compared with conditions observed in healthy ...
متن کاملInhibition of apoptosis signal-regulating kinase 1 alters the wound epidermis and enhances auricular cartilage regeneration
Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO) or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), ...
متن کاملDelayed wound healing in keratin 6a knockout mice.
Keratin 6 (K6) expression in the epidermis has two components: constitutive expression in the innermost layer of the outer root sheath (ORS) of hair follicles and inducible expression in the interfollicular epidermis in response to stressful stimuli such as wounding. Mice express two K6 isoforms, MK6a and MK6b. To gain insight into the functional significance of these isoforms, we generated MK6...
متن کاملLocal nerve damage in leprosy does not lead to an impaired cellular immune response or decreased wound healing in the skin.
This study investigated whether peripheral nerve damage in patients with leprosy impairs local cellular immune responses, thereby reducing wound healing and leading to chronic skin ulceration. Anesthetic and contralateral sensitive skin sites in 42 patients with leprosy were compared for delayed-type hypersensitivity responses to purified protein derivative (PPD) of tuberculin. Leukocyte recrui...
متن کاملTargeted disruption of glutathione peroxidase 4 (GPx4) in mouse skin epithelial cells impairs postnatal hair follicle morphogenesis that is partially rescued through inhibition of COX-2
Selenoproteins are essential molecules for the mammalian antioxidant network. We previously demonstrated that targeted loss of all selenoproteins in mouse epidermis disrupted skin and hair development, and caused premature death. In the current study, we targeted specific selenoproteins for epidermal deletion to determine whether similar phenotypes developed. Keratinocyte-specific knockout mice...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 304 3 شماره
صفحات -
تاریخ انتشار 2003